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We describe a new class of algorithms for generating a variety of geometric interfacial
motions by alternating two steps: Construction of the signed distance function (i.e. redis-
tancing) to the interface, and convolution with a suitable kernel. These algorithms can be
seen as variants of Merriman, Bence, and Osher’s threshold dynamics [25]. The new algo-
rithms proposed here preserve the computational efficiency of the original threshold
dynamics algorithm. However, unlike threshold dynamics, the new algorithms also allow
attaining high accuracy on uniform grids, without adaptive refinement.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In [25], Merriman, Bence, and Osher (MBO) proposed an intriguing algorithm for approximating the motion by mean cur-
vature of an interface by alternating two computationally efficient steps: Convolution, and simple thresholding. To be pre-
cise, let R � RN be a domain whose boundary @R is to be evolved via motion by mean curvature. Given a time step size dt > 0,
the MBO algorithm generates a time discrete approximation f@Rng to motion by mean curvature (where @Rn is the approx-
imation at time t ¼ ndt) according to the following prescription for obtaining Rnþ1 from Rn:

1. Convolution step: Form u : RN ! R as
uðxÞ ¼ ðGt � 1Rn ÞðxÞ ð1Þ

where GtðxÞ is the N-dimensional Gaussian kernel

GtðxÞ ¼
1

ð4ptÞN=2 e�
jxj2
4t : ð2Þ

2. Thresholding step: Return to the realm of sets:
Rnþ1 ¼ x : uðxÞP 1
2

� �
: ð3Þ
This algorithm has been rigorously verified to converge to motion by mean curvature in the limit dt ! 0þ; see e.g. [17,4].
One of its major advantages is unconditional stability: The choice of time step size dt is constrained only by accuracy
. All rights reserved.
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considerations; the scheme remains stable (in fact, monotone) for all choices, independently of spatial resolution. In addition,
for any choice of dt, the computational complexity of each time step is low: The bottleneck is the convolution step, which can
be accomplished using e.g. the fast Fourier transform (FFT) at Oðn log nÞ cost when a uniform grid of n points is used for spa-
tial discretization. This is a major benefit over standard level set based approaches [27] which invariably involve the solution
of a degenerate, very nonlinear PDE; however, see e.g. [36] for some semi-implicit level set schemes. The thresholding based
algorithm of MBO has been generalized in subsequent papers (e.g. [24,30,32]) to other geometric motions, and more recently
to some fourth order flows [20,14,15].

Although the MBO algorithm is thus very attractive from a computational complexity point of view, it has well known
drawbacks. Chief among them is its inaccuracy on uniform grids. Indeed, unless grid size is refined concurrently with the
time step size, the approximate motion generated by the algorithm gets ‘‘stuck” [25]. Less severely, even at moderately large
time step sizes, there can be very large errors in the computed dynamics. Hence, in practice, it is necessary to discretize the
MBO scheme using a method which can provide subgrid resolution of the interface position. This is accomplished in [31]
while maintaining the efficiency of the algorithm through the use of unequally spaced FFTs. Unequally spaced FFTs also en-
able the use of adaptive grids to concentrate the computational effort near the interface. Such a spatially adaptive strategy
proves especially indispensable in simulating high order motions.

This paper explores a different class of diffusion generated motion algorithms, where the thresholding step is replaced by
another fast procedure: Construction of the signed distance function to the interface. The motivation is very easy to explain:
Unlike characteristic functions, signed distance functions can be accurately represented on uniform grids at subgrid accura-
cies due to their Lipschitz continuity. This alleviates the inaccuracies involved in the original (finite difference) MBO algo-
rithm. The second step of MBO type algorithms, namely the convolution step, remains the same in character (though
details might need to be different; see Section 5). Since there are a variety of existing algorithms for fast computation of
signed distance functions (e.g. fast marching, fast sweeping, etc. [40,35,39,29,11]), the modification to the original MBO algo-
rithm proposed here does not sacrifice efficiency (up to a constant factor, of course) for the resulting improved accuracy.
Moreover, they lead to highly accurate computations on uniform grids – in our opinion, one of the greatest benefits of
the proposed method.
2. Main idea and outline of results

In this section we discuss the main ideas of the paper, provide general motivation for the proposed algorithms, and give
an outline of the results presented.

The inaccuracy of the original MBO threshold dynamics algorithm on uniform grids stems from representing character-
istic functions of sets (i.e. binary functions) on such grids. Indeed, the thresholding step of the algorithm necessitates this at
every time step. However, using a binary function on a uniform grid, the boundary of the set cannot be located with better
accuracy than dx, the grid size. In particular, there is no way to interpolate and thus locate the interface with subgrid accu-
racy: The interface is essentially forced to follow grid lines.

Our observation is quite simple: In order to derive MBO type algorithms, the essential point is to
Represent the interface by a level set function wðxÞwhose 1D profile / : R! R along every normal to the interface is iden-

tical, and satisfies
/0ð0Þ – 0 and /00ð0Þ ¼ 0: ð4Þ
In particular, this 1D profile need not be the Heaviside function as it is in the original algorithm, the discontinuous nature
of which is the cause of poor accuracy on uniform grids. For example, the 1D profile / can be chosen to be any other smooth,
odd, monotone function of one variable that takes the value 0 at 0. Indeed, in case the level set function wðxÞ representing the
interface has identical profiles along every normal, it can then be written as
wðxÞ ¼ /ðdðxÞÞ
in a neighborhood of the interface, where d is the signed distance function to the interface. Then, for any such representation
we have
DwðxÞ ¼ /0ðdðxÞÞDdðxÞ þ /00ðdÞjrdj2 ¼ /0ð0ÞjðxÞ
when evaluated at a point x on the interface (so that dðxÞ ¼ 0), under the assumption (4) on /; here j denotes mean
curvature.

Indeed, as long as the level set function that represents the interface has the same profile along every normal to the inter-
face, it is easy to see that alternating the construction of such a representation for the interface and convolution with posi-
tive, symmetric, unit mass kernels would always generate motion by mean curvature as the leading order motion, just as the
original MBO scheme. In addition, a smooth profile with a uniform bound on its derivative would allow interpolation to lo-
cate the interface with accuracy considerably greater than dx. See Fig. 1 for an illustration of this basic point. The simplest
smooth, odd, 1D profile is the identity function /ðnÞ ¼ n; this leads us to represent the interface with the signed distance func-
tion, and is the basis of the algorithms derived in the present paper. In particular, in this paper we ask: What kind of inter-
esting geometric flows can we generate by alternating convolution and the construction of the signed distance function?



Fig. 1. The discontinuous, Heaviside function based profile of the characteristic function used to represent interfaces in the original MBO threshold
dynamics does not allow to locate the interface at subgrid accuracy via interpolation (left). A function with a smooth normal profile, such as the signed
distance function, does (right).
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To explore this idea, in Section 4 we obtain Taylor expansions for the distance function of an interface in the plane in
terms of its geometric quantities (such as curvature and derivatives of curvature). In particular, we concentrate on two sit-
uations: Points where the interface is smooth, and points where two smooth curves meet in a corner with given angle. The
first expansion is relevant for deriving algorithms in two-phase flow, and the second is used for algorithms for multiphase
motion, such as the motion of triple junctions. Section 5 is devoted to utilizing the expansions in Section 4 to derive algo-
rithms for various types of motion. Section 5.1 focuses on the rather familiar case of motion by mean curvature, with the
slight modification of an additional spatially varying normal speed. Although we suspect that the first algorithm we write
down for this motion may not be completely unexpected, it is a good place to start and we do follow it up with more inter-
esting high order in time variants. Section 5.2 describes a monotone algorithm for generating the motion f ðjÞ where
f : R! R is an odd, increasing, Lipschitz continuous function, and j is the curvature of the interface. Section 5.3 explores
an algorithm for motion of triple junctions under curvature flow with prescribed angle conditions at the junctions, and takes
significant steps towards its justification by estimating the local truncation error at the junctions. Section 5.4 describes a ten-
tative algorithm for motion by surface diffusion – a fourth order flow – using the signed distance function based approach of
this paper. Finally in Section 6 we present numerical results and convergence studies with the algorithms proposed in Sec-
tion 5. Although most of our derivations and algorithms are stated in two dimensions, some of them have immediate and
straightforward extensions to higher dimensions; we briefly indicate these wherever appropriate.
3. Previous work

First and foremost, as already mention in Section 1, the approach to interfacial motion advocated in this paper is moti-
vated by Merriman, Bence, and Osher’s threshold dynamics [25]. The accuracy issue concerning this algorithm when imple-
mented on uniform grids is well known and constitutes one of the main thrusts behind not only the present paper, but also
that of several previous works. In [31], an adaptive refinement strategy for the MBO scheme is proposed and efficiently
implemented using a spectral method in order to address the original scheme’s accuracy shortcomings; that method repre-
sents an alternative strategy to the path taken here. Additionally, some of our discussions in Section 5 on how to generate a
variety of interfacial motions using the signed distance function follows the analogous developments that use characteristic
functions in [31,30]. In particular, our discussion of high order in time schemes for curvature flow in Section 5.1, as well as our
treatment of multiphase flow of networks (junctions) in Section 5.3 have precursors in [31,30]. The signed distance function
representation utilized in the present paper is less explicit a representation of an interface than a characteristic function rep-
resentation. This makes the algorithms and especially the analysis in this paper quite different from these previous works.

It is interesting to make the connection, even though it is indirect, between one of the algorithms presented in this paper,
namely the most basic one (64) and (65) of the several mean curvature motion algorithms from Section 5.1, and a recent
algorithm for the same motion proposed by Chambolle in [8,9]. In these works, the author proposes an algorithm for imple-
menting Almgren et al. discrete in time variational approximation [1] to motion by mean curvature that entails the construc-
tion of the distance function to an interface at every time step; this step of his algorithm is identical to step (65) of the one
presented in Section 5.1 of the present paper. However, the second step of the algorithms presented in [8,9] involves the
solution of a computationally very non-trivial total variation based optimization problem as in [28] per time step – this as-
pect is drastically different from the algorithms proposed in the present paper.

A distance function based level set-like algorithm for the special case of motion by mean curvature plus a constant is pro-
posed in [22]. Although their algorithm also constructs the signed distance function to the interface at every time step and
thus may be likened to one of the proposed algorithms, namely (64) and (65) in this paper, it is actually quite different. In-
deed, the algorithm of [22] utilizes the signed distance function only in evaluating the right hand side of the explicit in time
version of standard level set equation for mean curvature flow. Therefore, unlike the algorithms proposed in this paper, it
lacks unconditional stability.

Finally, convergence to the viscosity solution [17] of the discrete in time solutions generated by the most basic one (64)
and (65) of the several mean curvature motion algorithms presented in Section 5 has been established in [10].
4. Expansions for the distance function

In this section, we first write down a Taylor expansion of the signed distance function dRðxÞ in the neighborhood of a point
p 2 @R on the smooth boundary @R of a set R. For simplicity, we work mostly in R2 where we write x ¼ ðx; yÞ. This expansion
then allows us to obtain a Taylor expansion for the convolution of dRðx; yÞ with a Gaussian kernel Gtðx; yÞ. Our goal is to ex-
press the expansion coefficients in terms of the geometry (curvature and derivatives of curvature) of @R.
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4.1. Expansion for a smooth interface

We will eventually work in the plane for convenience; but first, let us recall a few well known properties of the signed
distance function that hold more generally in RN; see e.g. [18,12].

For x 2 @R, let nðxÞ denote the unit outer normal to @R at x. The first familiar property we note is based on the fact that the
normals to a smooth interface do not focus right away, so that the signed distance function is smooth in a tubular neighbor-
hood of @R, and is linear with slope one along the normals:

Proposition 1. Let @R be Ck;‘ (i.e. kth derivative Holder continuous with exponent ‘) where k P 2 and ‘ P 0 in a neighborhood of
p 2 @R. Then, there exists a neighborhood T � RN of p such that dRðxÞ is Ck;‘ in T. The closest point projection map P : RN ! @R is
well-defined on T. Furthermore, dR and P satisfy
dRðxÞ ¼ ðx� PðxÞÞ � nðPðxÞÞ ð5Þ
in T. In addition, dðxÞ satisfies
jrdRj ¼ 1 for all x 2 T; with the boundary condition dRjx2@R ¼ 0: ð6Þ
The second important fact we recall is that Laplacian of the signed distance function dR at a point x gives us essentially the
mean curvature of the isosurface of d passing through x:
DdRðxÞ ¼ ðN � 1ÞHðxÞ ð7Þ
where HðxÞ denotes the mean curvature of the level set fn : f ðnÞ ¼ f ðxÞg at x.
Specializing to the planar (2D) setting, let c : ð�e; eÞ ! R2 be a unit speed parametrization of the curve @R around p 2 @R,

with cð0Þ ¼ p and positive orientation. Let jðxÞ denote the curvature of the curve at x:
cssð0Þ � nðpÞ ¼ jðpÞ: ð8Þ
Note that curvature j of the boundary of convex sets is negative according to convention (8).
We may rotate and translate the set R so that p ¼ 0 2 R2 and the outer unit normal nð0Þ at p ¼ 0 is given by the vector

nð0Þ ¼ ð0;�1Þ; see Fig. 2 for the setup.
Let f ðxÞ be the smooth function whose graph ðx; f ðxÞÞ describes the interface @R in a neighborhood of the origin. Let us

write simply jðxÞ to denote the curvature jðx; f ðxÞÞ of @R at ðx; f ðxÞÞ. We then have the following relations implied:
f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; and f 00ð0Þ ¼ �jð0Þ: ð9Þ
For the signed distance function dRðx; yÞ to R, we drop the R in its notation and adopt the convention that dðx; yÞ < 0 if
y < f ðxÞ (and hence dðx; yÞ > 0 if y > f ðxÞ). In 2D, Eq. (7) reads
dxxðx; f ðxÞÞ þ dyyðx; f ðxÞÞ ¼ jðxÞ ð10Þ
on the interface.
The following useful formulas follow immediately from (5) in Proposition 1:

Lemma 1. For sufficiently small y, we have
dð0; yÞ ¼ y ð11Þ
so that
Fig. 2. The setup.
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Fig. 3. The convolution kernel involved in the more accurate algorithm for mean curvature motion is not positive; the resulting algorithm therefore may
not be monotone.
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dyð0; yÞ ¼ 1; ð12Þ
@k

@yk
dð0; yÞ ¼ 0 for k ¼ 2;3;4; . . . ð13Þ
and
dxð0; yÞ ¼ 0: ð14Þ
Proof. That dð0; yÞ ¼ y follows from (5), and the y partial derivatives follow from this expression. Then, (14) follows from
these and the Eikonal Eq. (6). h

Lemma 2. The following hold
@k

@yk
dxð0; yÞ ¼ 0 for k ¼ 1;2;3; . . . ð15Þ
for all sufficiently small y.

Proof. Set Aðx; yÞ :¼ d2
x ðx; yÞ þ d2

yðx; yÞ. Then, by (6) we have
Aðx; yÞ � 1 for all small enough ðx; yÞ: ð16Þ
Differentiating (16) w.r.t. x and y, we have
1
2
@

@x
Aðx; yÞ ¼ dxðx; yÞdxxðx; yÞ þ dyðx; yÞdxyðx; yÞ � 0; and

1
2
@

@y
Aðx; yÞ ¼ dxðx; yÞdxyðx; yÞ þ dyðx; yÞdyyðx; yÞ � 0:

ð17Þ
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Evaluating the first equality in (17) at x ¼ 0 and using (13) and (14) we get
dxyð0; yÞ � 0 for all small enough y: ð18Þ
Further differentiating (18) with respect to y, we get (15). h

Lemma 3. The following hold:
dxxð0;0Þ ¼ jð0Þ; ð19aÞ
dxxyð0;0Þ ¼ �j2ð0Þ; ð19bÞ
dxxxð0;0Þ ¼ jxð0Þ: ð19cÞ
Proof. Eq. (19a) follows from evaluating (10) at x ¼ 0 and (13).

To obtain (19b), we first differentiate (17) with respect to x once again:
1
2

Axxðx; yÞ ¼ d2
xx þ dxdxxx þ d2

xy þ dydxxy � 0: ð20Þ
Evaluating (20) at ðx; yÞ ¼ ð0;0Þ and using 19a, 14, 13 and 15 we get (19b).
To obtain (19c), we differentiate (10) with respect to x:
dxxxðx; f ðxÞÞ þ dxxyðx; f ðxÞÞf 0ðxÞ þ dyyxðx; f ðxÞÞ þ dyyyðx; f ðxÞÞf 0ðxÞ � jxðxÞ: ð21Þ
Evaluating (21) at x ¼ 0 and using (9) and (15), we get (19c). h

Lemma 4. The following hold:
dxxxyð0; 0Þ ¼ �3jð0Þjxð0Þ; ð22aÞ
dxxyyð0; 0Þ ¼ 2j3ð0Þ; ð22bÞ
dxxxxð0; 0Þ ¼ jxxð0Þ � 3j3ð0Þ: ð22cÞ
Proof. Differentiating (20) with respect to x once again, we obtain
1
2

Axxxðx; yÞ ¼ 3dxxdxxx þ dxdxxxx þ 3dxydxxy þ dydxxxy � 0: ð23Þ
Evaluating at x ¼ 0 and using 19a, 19c, 14, 15 and 13 we get (22a).
Differentiating (20) this time with respect to y, we get
1
2

Axxyðx; yÞ ¼ 2dxxdxxy þ dxydxxx þ dxdxxxy þ 2dxydxyy þ dyydxxy þ dydxxyy � 0: ð24Þ
Evaluating at x ¼ 0 and using 19a, 19b, 15, 14 and 13 yields (22b).
Differentiating (21) once more with respect to x, we find
dxxxxðx; f Þ þ 2dxxxyðx; f Þf 0 þ dxxyyðx; f Þðf 0Þ2 þ dxxyðx; f Þf 00 þ dxxyyðx; f Þ þ 2dxyyyðx; yÞf 0 þ dxyyyyðx; f Þðf 0Þ2 þ dyyyðx; f Þf 00

¼ jxx: ð25Þ
Evaluating at x ¼ 0 and using 9, 19b, 22b and 13 we get (22c). h

Collecting terms from Lemmas 1 to 4, we arrive at the desired Taylor expansion:

Proposition 2. The signed distance function dðx; f ðxÞÞ has the following Taylor expansion at x ¼ 0:
dðx; yÞ ¼ yþ 1
2
jð0Þx2 þ 1

6
jxð0Þx3 � 1

2
j2ð0Þx2yþ 1

24
ðjxxð0Þ � 3j3ð0ÞÞx4 � 1

2
jð0Þjxð0Þx3yþ 1

2
j3ð0Þx2y2 þ Oðjxj5Þ:

ð26Þ
We can now substitute the expansion (26) into the convolution integral
Z
R2

Gtðn;gÞdðx� n; y� gÞ dndg ð27Þ
to get a Taylor expansion for the convolution ðGt � dÞðx; yÞ at ðx; yÞ ¼ ð0; 0Þ. The terms we need are:
ðx2 � GtÞð0; yÞ ¼ 2t ðx2y � GtÞð0; yÞ ¼ 2ty ð28Þ
ðx4 � GtÞð0; yÞ ¼ 12t2 ðx2y2GtÞð0; yÞ ¼ 2ty2 þ 4t2 ð29Þ
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Using these, we arrive at the following expansion:

Proposition 3. Convolution of the signed distance function d with the Gaussian kernel Gt has the following expansion
Fig. 4.
approxi
ðd � GtÞð0; yÞ ¼ yþ jð0Þt � j2ð0Þyt þ 1
2
ðjxxð0Þ þ j3ð0ÞÞt2 þ Oðt3Þ ð30Þ
provided that y ¼ OðtÞ.

Remark 1. Because f 0ð0Þ ¼ 0, we in fact have
jxxð0Þ ¼ jssð0Þ
where jss denotes second derivative of curvature with respect to arc-length. Thus coefficients in the expansion of Proposition
3 can be easily expressed in completely geometric quantities, if desired.
4.2. Expansion at a junction

For convenience, let us introduce the following notation for the 1D Gaussian:
gtðxÞ ¼
1ffiffiffiffiffiffiffiffi
4pt
p e�

x2
4t so that Gtðx; yÞ ¼ gtðxÞgtðyÞ: ð31Þ
Let us record the formulas
Z 1

0
ngtðnÞ dn ¼

ffiffi
t
pffiffiffiffi
p
p ;

Z 1

0
n2gtðnÞ dn ¼ t; and

Z x

�1
ngtðnÞ dn ¼ �

ffiffi
t
pffiffiffiffi
p
p e�

x2
4t : ð32Þ
We now consider the set up where three C2 curves meet in a triple point located at the origin, such that their tangents have
the angles 2h1;2h2;2h3 2 ð0;pÞ between them; see Fig. 4 for an illustration. If we zoom in to the origin, the set up would look
like three sectors, as indicated in the right hand side plot of Fig. 4. Hence, we start by writing down explicit formulas for the
distance function to a sector.

Let a sector S of opening angle 2h be given as follows:
S ¼ ðx; yÞ : y < tan
3p
2
� h

� �
x and y < tan

3p
2
þ h

� �
x

� �
: ð33Þ
See Fig. 5 for an illustration. We will say that the ridge of S is the set on the complement of which the signed distance function
to S is smooth; it consists of the following three lines:
‘1 :¼ fðx; yÞ : x P 0 and y ¼ ðtan hÞxg;
‘2 :¼ fðx; yÞ : x 6 0 and y ¼ �ðtan hÞxg; ð34Þ
‘3 :¼ fðx; yÞ : x ¼ 0 and y 6 0g:
Then, we distinguish the three regions defined by the ridge (as shown in Fig. 5), in each of which the signed distance function
is smooth, as follows:

� Region 1: R1 :¼ fðx; yÞ : y 6 ðtan hÞx and x P 0g,
� Region 2: R2 :¼ fðx; yÞ : y 6 �ðtan hÞx and x 6 0g, and
Let: A triple junction where three C2 curves meet. Right: When we zoom in on the junction, the three sets (phases) meeting at the triple point can be
mated by an arrangement of sectors. The discussion in Sections 4.2 and 5.3 perturbs from this configuration.
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� Region 3: R3 :¼ fðx; yÞ : y P ðtan hÞjxjg.

It is then easy to see that the signed distance function is given as follows in these regions:

� Region 1: dðx; yÞ ¼ �x cos h� y sin h for ðx; yÞ 2 R1,
� Region 2: dðx; yÞ ¼ x cos h� y sin h for ðx; yÞ 2 R2, and
� Region 3: dðx; yÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
for ðx; yÞ 2 R3.

See Fig. 5 for illustration of the regions and level curves of the signed distance function. We will compute the Taylor
expansion at the origin of the convolution of the signed distance function d to the sector S with the Gaussian kernel.

We start with the constant term in the expansion. To that end, we first note:
Z
R1

xGtðx; yÞ dx dy ¼
Z 0

�1

Z 1

0
xGtðx; yÞ dx dyþ

Z 1

0

Z 1

y
tan h

xGtðx; yÞ dx dy ¼
ffiffi
t
p

2
ffiffiffiffi
p
p þ

ffiffi
t
p

2
ffiffiffiffi
p
p tan hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 h
p ð35Þ

Z
R1

yGtðx; yÞ dx dy ¼
Z 1

0

Z ðtan hÞx

�1
yGtðx; yÞ dy dx ¼ �

ffiffi
t
p

2
ffiffiffiffi
p
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 h
p ð36Þ
Observing that
Z
R1[R2

dðx0; y0ÞGtðx� x0; y� y0Þ dx0 dy0
����
x¼0; y¼0

¼ 2
Z

R1

dðx0; y0ÞGtðx0; y0Þ dx0 dy0

¼ �2 cos h
Z

R1

x0Gtðx0; y0Þ dx0 dy0 � 2 sin h
Z

R1

y0Gtðx0; y0Þ dx0 dy0 ð37Þ
and using (35) and (36), we get:
Z
R1[R2

dðx0; y0ÞGtðx� x0; y� y0Þ dx0 dy0
����
x¼0; y¼0

¼ �
ffiffi
t
pffiffiffiffi
p
p cos h: ð38Þ
Next, we calculate
Z
R3

dðx0; y0ÞGtðx� x0; y� y0Þ dx0 dy0
����

x¼0; y¼0

¼ �
Z p�2h

0

Z 1

0
r2 1

4pt
e�

r2
4t dr dh ¼ ð2h� pÞ

ffiffi
t
p

2
ffiffiffiffi
p
p ð39Þ
We can now put together (38) and (39) to get the 0th order term in the desired expansion:
Z
R2

dðx0; y0ÞGtðx� x0; y� y0Þ dx0 dy0
����

x¼0; y¼0
¼

ffiffi
t
pffiffiffiffi
p
p h� p

2
� cos h

� 	
: ð40Þ
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Moving on to the calculation of higher order terms, we first note:
Z
R1

xyGtðx; yÞ dx dy ¼
Z 1

0

Z ðtan hÞx

�1
xyGtðx; yÞ dx dy ¼

Z 1

0
xgtðxÞ

Z ðtan hÞx

�1
ygtðyÞ dy dx ¼ � t

pð1þ tan2 hÞ
: ð41Þ
Also useful is:
Z
R1

y2Gtðx; yÞ dx dy ¼
Z 1

0
gtðxÞ

Z ðtan hÞx

�1
y2gtðyÞ dy dx ¼ � t

p
ðtan hÞ

ð1þ tan2 hÞ
þ ðpþ 2hÞ

2p t: ð42Þ
Using (41) and (42) we get
Z
R1[R2

dðx0; y0Þ @
@y

Gtðx� x0; y� y0Þ dx0 dy0
����

x¼0; y¼0

¼ 1
t

Z
R1

dðx; yÞyGtðx; yÞ dx dy

¼ �1
t

Z
R1

ðx cos hþ y sin hÞ y Gtðx; yÞ dx dy

¼ � cos h
t

Z
R1

xyGtðx; yÞ dx dy� sin h
t

Z
R1

y2Gtðx; yÞ dx dy

¼ � 1
p

p
2
þ h

� 	
sin h� cos h

� 	
: ð43Þ
We now also calculate
Z
R3

dðx0; y0Þ @
@y

Gtðx� x0; y� y0Þ dx0 dy0
����

x¼0; y¼0

¼ 1
2t

Z
R3

dðx; yÞ y Gtðx; yÞ dx dy ¼ � 1
2t

Z p�h

h

Z 1

0
r3 sin h

e�
r2
4t

4pt
dr dh

¼ �2 cos h
p

: ð44Þ
Putting together (43) and (44) we find
Z
R2

dðx0; y0Þ @
@y

Gtðx� x0; y� y0Þ dx0 dy0
����

x¼0; y¼0
¼ � 1

p
p
2
þ h

� 	
sin hþ cos h

� 	
: ð45Þ
which is the coefficient of y in the expansion we seek. Noting that the coefficient of x must be zero on symmetry grounds, we
next consider quadratic terms. To that end, first compute:
Z

R1[R2

dðx0; y0Þ @
2

@x2 Gtðx� x0; y� y0Þ dx0 dy0
�����

x¼0;y¼0

¼ 2
Z

R1

dðx0; y0Þ @
2

@x2 Gtðx0; y0Þ dx0 dy0

¼ �2
Z 1

0

Z x tan h

�1
x0 cos hþ y0 sin hð Þ @

2

@x2 Gtðx0; y0Þ dy0 dx0

¼ � 1
2
ffiffiffiffiffiffi
pt
p ð1þ 2 sin hÞ cos h: ð46Þ
Then,
 Z
R3

dðx0; y0Þ @
2

@x2 Gtðx� x0; y� y0Þ dx0 dy0
�����

x¼0;y¼0

¼ �
Z

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 þ ðy0Þ2

q
@2

@x2 Gtðx0; y0Þ dx dy

¼
Z 1

0

Z p�h

h

r2

16pt3 ð2t � r2 cos2 h0Þe�r2
4t dh0 dr

¼ 1
8
ffiffiffiffiffiffi
pt
p ð3 sinð2hÞ þ 2h� pÞ: ð47Þ
Putting (46) and (47) together, we find
Z
R2

dðx0; y0Þ @
2

@x2 Gtðx� x0; y� y0Þ dx0 dy0
�����

x¼0;y¼0

¼ 1
8
ffiffiffiffiffiffi
pt
p 2h� 4 cos h� sinð2hÞ � pð Þ: ð48Þ
which would be the coefficient of x2 in the expansion. Noting once again on symmetry grounds that the coefficient of xy must
be zero, it remains only to compute the coefficient of y2, as follows:
Z

R1[R2

dðx0; y0Þ @
2

@y2 Gtðx� x0; y� y0Þ dx0 dy0
�����
x¼0;y¼0

¼ �2
Z

R1

ðx0 cos hþ y0 sin hÞ @
2

@y2 Gtðx0; y0Þ dx0 dy0 ¼ 1
2
ffiffiffiffiffiffi
pt
p sinð2hÞ ð49Þ
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and
Fig. 6.
of the s
Z
R3

dðx0; y0Þ @
2

@y2 Gtðx� x0; y� y0Þ dx0 dy0
�����
x¼0;y¼0

¼ 1
8
ffiffiffiffiffiffi
pt
p ð2h� 3 sinð2hÞ � pÞ: ð50Þ
Putting together (49) and (50) we obtain
Z
R2

dðx0; y0Þ @
2

@y2 Gtðx� x0; y� y0Þ dx0 dy0
�����
x¼0;y¼0

¼ 1
8
ffiffiffiffiffiffi
pt
p ðsinð2hÞ þ 2h� pÞ ð51Þ
which is the coefficient of y2. Additionally, note that since the signed distance function d to any set is Lipschitz, we have
@k

@xj1 � � � @xjk

Gt � dð ÞðxÞ
�����

����� 6 Ckt
1�k

2 ð52Þ
for k ¼ 1;2;3; . . ., where the constants Ck are universal.
Finally, putting the formulas 40, 45, 48, 51 and the bound (52) together with the following Taylor expansion at the origin
ðGt � dÞðxÞ ¼ c00ðtÞ þ c10ðtÞ xþ c01ðtÞ yþ c20ðtÞ x2 þ c11ðtÞ xyþ c02ðtÞy2 þ � � � ð53Þ
we arrive at the following.

Proposition 4. Convolution of the signed distance function d for the sector (33) with a Gaussian kernel satisfies the following
Taylor expansion:
Z

R2
dðx0;y0ÞGtðx� x0;y�y0Þ dx0 dy0 ¼

ffiffi
t
pffiffiffiffi
p
p h�p

2
� cosh

� 	
� 1

p
p
2
þ h

� 	
sinhþ cosh

� 	
y

þ 1ffiffi
t
p 1

16
ffiffiffiffi
p
p ð2h�4cosh� sin2h�pÞx2þ 1ffiffi

t
p 1

16
ffiffiffiffi
p
p ðsin2hþ2h�pÞy2þO

jxj3

t

 !
:

ð54Þ
We now turn to obtaining the analogous expansion at a corner point of an open set R whose boundary at the corner point
consists of the meeting of two C2 arcs, namely C1 and C2. Let 2h denote the (interior) angle formed by these curves at the
junction. Assume that h < p

2. Also, assume that R has been rotated and translated if necessary so that the corner point is
at the origin, and R \ Brð0Þ is contained in the lower half plane for small enough r > 0, and its boundary curves C1 and C2

make angles of h with the axis fy 6 0g as shown in Fig. 6.

Consider the approximating sector S to the set R at the origin. More precisely, S is the sector the boundary curves of which
are tangent to those of R at the origin, so that in particular we have
lim sup
r!0þ

H @S \ Brð0Þ; @R \ Brð0Þð Þ
r2 <1 ð55Þ
A set R with a corner on its boundary, and the approximating sector S at the corner. The ridge for the sector is shown in red by the dashed lines; that
et R is shown in black dashed curves that are tangent to the red dashed lines at the corner.
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where Hð�; �Þ denotes the Hausdorff distance. See Fig. 6 for an illustration. A consequence of (55) is
lim sup
r!0þ

jBrð0Þ \ ðR \ SÞj
r3 <1: ð56Þ
Let d denote the signed distance function to R, and let ~d denote the signed distance function to the sector S. By (55), we have
jdðxÞ � ~dðxÞj ¼ Oðjxj2Þ as x! 0: ð57Þ
Therefore,
jd � Gtð0Þ � ~d � Gtð0Þj 6
Z

R2

����ðd� ~dÞð�xÞjGtðxÞ dx 6
Z

R2
Oðjxj2ÞGtðxÞ dx ¼ OðtÞ as t ! 0: ð58Þ
Moreover,
@

@xj
ðd � GtÞð0Þ �

@

@xj
ð~d � GtÞð0Þ

����
���� ¼ d � @xj

Gt

� 	
ð0Þ � ~d � @xj

Gt

� 	
ð0Þ

��� ��� 6 Z
R2

Oðjxj2Þ @xj
Gt

��� ��� dx ¼ Oð
ffiffi
t
p
Þ as t ! 0: ð59Þ
We also need to estimate second derivatives of dðxÞ. To that end, we first note the following easy lemma:

Lemma 5. The ridge of the signed distance function to R in a neighborhood of the origin consists of three simple C2 arcs c1, c2 and
c3 that touch each other only at the origin. The arcs c1 and c2 coincide with the lines ‘1; ‘2 that constitute part of the ridge of the
approximating sector (see (34)). The third arc, c3, is tangent to ‘3 at the origin so that in particular
H c3 \ Brð0Þ; ‘3 \ Brð0Þð Þ ¼ oðrÞ as r ! 0 ð60Þ
where Hð�; �Þ denotes the Hausdorff distance. See Fig. 6.

Proof. The lemma is easy to establish by use of Proposition 1 and the implicit function theorem. h

Lemma 5 shows that near the origin, rd and r~d disagree at Oð1Þ level on only a thin set. Based on this observation, it is
easy to establish the following estimate:
@2

@xi@xj
ðd � GtÞð0; 0Þ �

@2

@xi@xj
ð~d � GtÞð0;0Þ

�����
����� 6

Z
R2

@

@xi
ðd� ~dÞðx0; y0Þ @

@xj
Gtðx0; y0Þ

����
���� dx0 dy0 ¼ Oð1Þ ð61Þ
that holds for any i; j 2 f1;2g.
Since Gt � d is a C1 function for any t > 0, it has a Taylor expansion of the form (53). Indeed, expansion (54) that applies to

~d, together with the bounds 52, 56 and 61 give the following expansion for d:

Proposition 5. Convolution with a Gaussian kernel of the signed distance function d of the domain R at its corner located at the
origin formed by the meeting of two C2 arcs C1 and C2 as in Fig. 6 satisfies the following Taylor expansion:
Z
R2

dðx0; y0ÞGtðx� x0; y� y0Þ dx0 dy0 ¼
ffiffi
t
pffiffiffiffi
p
p h� p

2
� cos hþ C1ðtÞ

� 	
þ C2ðtÞ x� 1

p
p
2
þ h

� 	
sin hþ cos hþ C3ðtÞ

� 	
y

þ 1ffiffi
t
p 1

16
ffiffiffiffi
p
p 2h� 4 cos h� sin 2h� pþ C3ðtÞð Þx2

þ 1ffiffi
t
p 1

16
ffiffiffiffi
p
p sin 2hþ 2h� pþ C4ðtÞð Þy2 þ 1ffiffi

t
p C5ðtÞxyþH:O:T: ð62Þ
The coefficients CjðtÞ satisfy CjðtÞ ¼ Oð
ffiffi
t
p
Þ as t ! 0þ.
5. Algorithms

In this section, we utilize the expansions obtained in the previous sections to describe a number of new algorithms for
interfacial motion.

5.1. Warm up: curvature motion

In this section, we describe several algorithms for simulating the motion of an interface with normal speeds of the form
vn ¼ jþ SðxÞ ð63Þ
where S : R2 ! R is a given function.
We start with the following algorithm for the slightly generalized curvature motion (63), which is very easily obtained

from expansion (30).
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Algorithm 1. Given the initial set R0 through its signed distance function d0ðxÞ and a time step size dt > 0, generate the sets
Rj via their signed distance functions djðxÞ at subsequent discrete times t ¼ jðdtÞ by alternating the following steps:
1. Form the function
AðxÞ :¼ Gdt � dj þ ðdtÞSðxÞ: ð64Þ

2. Construct the signed distance function djþ1 by
djþ1ðxÞ ¼ RedistðAÞ: ð65Þ
It is easy to see that the algorithm is monotone, since each of its steps preserves order. Consistency of one step of the algo-
rithm with the desired motion (63) is immediate from (30), which shows that the zero level set of the convolution d � Gdt

crosses the y-axis at
y ¼ �jðdtÞ � Sð0; 0ÞðdtÞ þH:O:T: ð66Þ
leading to the advertised motion. Furthermore, we can read off the form of the leading order truncation error at every time
step by substituting (66) into expansion (30) to find:
Error ¼ 1
2
jss þ

3
2
j3 þ j2S

� �
ðdtÞ2 þ OððdtÞ3Þ: ð67Þ
We now turn our attention to designing more accurate versions of algorithms such as the one above. For instance,
we can utilize once again the expansion in (30) to get more accurate evaluation of curvature j at every time step using a
Richardson extrapolation-like procedure. This incurs no additional computational cost whatsoever, since the only modi-
fication to algorithm (64) and (65) is to replace the convolution kernel in step (64) by a linear combination of two
Gaussians.

Algorithm 2. Given the initial set R0 through its signed distance function d0ðxÞ and a time step size dt > 0, generate the sets
Rj via their signed distance functions djðxÞ at subsequent discrete times t ¼ jðdtÞ by alternating the following steps:
1. Form the function
AðxÞ :¼ Kdt � dj þ ðdtÞSðxÞ ð68Þ
where Kt is the kernel:
Kt ¼
1
3

4G3
2t � G3t

� 	
: ð69Þ
2. Construct the signed distance function djþ1 by
djþ1 ¼ RedistðAÞ: ð70Þ
Indeed, from expansion (30) we see that
Kdt � dð0; yÞ ¼ yþ ðjþ SÞðdtÞ � j2yðdtÞ þ OððdtÞ3Þ ð71Þ
leading to
Error ¼ ðj3 þ j2SÞðdtÞ2 þ OððdtÞ3Þ ð72Þ
which suggests better controlled accuracy in (implicit) evaluation of curvature at every time step by eliminating the depen-
dence of the leading order error term on derivatives of curvature (and improving the constant of the remaining term).
Numerical experiments with algorithm (68)–(70) indeed lead to more accurate results in practice than algorithm (64)
and (65); evidence to this effect is presented in Section 6.1. However, we should note that although the original algorithm
(64) and (65) is obviously monotone due to the positivity of its convolution kernel, we cannot say the same for algorithm
(68)–(70) since its convolution kernel Kt is no longer positive; see Fig. 3. Monotonicity cannot be guaranteed for the high
order in time schemes discussed below, either.

We now turn to designing higher order in time versions of (64) and (65), or (68)–(70), at the expense of increasing slightly
the number of convolution or redistancing operations involved at each time step (which are, although fast, still the most
computationally intensive tasks of our algorithms). For example, the following algorithm requires three convolution and
two redistancing operations per time step, but formally has quadratic convergence rate in t:
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Algorithm 3. Given the initial set R0 through its signed distance function d0ðxÞ and a time step size dt > 0, generate the sets
Rj via their signed distance functions djðxÞ at subsequent discrete times t ¼ jðdtÞ by alternating the following steps:

1. Form the functions
A1ðxÞ :¼ Kdt
2
� dj þ

ðdtÞ
2

SðxÞ

djþ1
2
ðxÞ :¼ RedistðA1Þ

A2ðxÞ :¼ Kdt
2
� djþ1

2
þ ðdtÞ

2
SðxÞ

A3ðxÞ :¼ Kdt � dj þ ðdtÞSðxÞ:

ð73Þ
where Kt is one of the two kernels:
Kt ¼ Gt or Kt ¼
1
3

4G3
2t � G3t

� 	
: ð74Þ
2. Construct the signed distance function djþ1 by
djþ1 ¼ Redistð2A2 � A3Þ: ð75Þ
By using a multistep strategy, we can reduce the per time step cost of the high order in time algorithm (73)–(75) above to
just two convolution and one redistancing operations. Indeed, the variant below still has formally quadratic convergence rate
in time:

Algorithm 4. Multistep version of (73)–(75):

1. Form the functions
A1ðxÞ :¼ K2dt � dj�1 þ 2ðdtÞSðxÞ
A2ðxÞ :¼ Kdt � dj þ ðdtÞSðxÞ

ð76Þ
2. Construct the signed distance function djþ1 by
djþ1 ¼ Redist
1
3
ð4A2 � A1Þ: ð77Þ
The algorithms in this section have been discussed in R2 for curves, but they generalize verbatim to hypersurfaces in RN .
In this case, they approximate the flow of hypersurfaces under normal speeds of the form
vn ¼ ðN � 1ÞH þ SðxÞ ð78Þ
where H denotes the mean curvature of the interface, and S : RN ! R is a given function.

5.2. Motion by f ðjÞ

In this section we present unconditionally monotone schemes for propagating interfaces with normal speeds given by
vn ¼ f ðjÞ ð79Þ
where f : R! R is an odd, increasing, Lipschitz function with constant Lf .
For any constant M > 0, we consider the following algorithm:

Algorithm 5. Given the initial set R0 through its signed distance function d0ðxÞ and a time step size dt > 0, generate the sets
Rj via their signed distance functions djðxÞ at subsequent discrete times t ¼ jðdtÞ by alternating the following steps:

1. Form the function
AðxÞ :¼ dj þ ðdtÞf 1
MðdtÞ GMðdtÞ � dj � dj


 �� �
ð80Þ
2. Construct distance function djþ1 by
djþ1ðxÞ ¼ RedistðAÞ: ð81Þ



1030 S. Esedog�lu et al. / Journal of Computational Physics 229 (2010) 1017–1042
At the jth step of the algorithm, the set Rj can be recovered if desired through the relation
Rj ¼ fx : djðxÞ > 0g:
Consistency of this algorithm is easy to verify on a C2 curve using the expansion (30) in Proposition 3. Indeed, using (30)
together with (11), we have
1
MðdtÞ fGMðdtÞ � d� dg ¼ jþ OðdtÞ: ð82Þ
Since f is Lipschitz, we therefore also have
f ðjÞ ¼ f
1

MðdtÞ GMðdtÞ � d� d

 �� �

þ OðdtÞ: ð83Þ
Once again using (11) in conjunction with (80), we see that the 0-level set of
dþ ðdtÞf 1
MðdtÞ GMðdtÞ � d� d


 �� �
ð84Þ
has moved with the desired speed in the normal direction; we also see that the scheme is first order accurate in time (though
higher order in time versions may be possible as in Section 5.1), and the constant in the error term depends on M as well as
the Lipschitz constant of f. In addition to this consistency result, we have the following monotonicity property:

Proposition 6. If M P Lf , then algorithm (80) and (81) is monotone for any choice of time step size dt > 0.

Proof. Let R1 and R2 be two sets satisfying R1 � R2. Let d1ðxÞ and d2ðxÞ be the signed distance functions to R1 and R2, respec-
tively. Then, first of all,
d1ðxÞ 6 d2ðxÞ for all x: ð85Þ
Using the same notation as in the description of the algorithm, let
A1ðxÞ ¼ d1ðxÞ þ ðdtÞf 1
MðdtÞ GMðdtÞ � d1 � d1


 �� �

A2ðxÞ ¼ d2ðxÞ þ ðdtÞf 1
MðdtÞ GMðdtÞ � d2 � d2


 �� �
:

ð86Þ
Then, just calculate:
A2 � A1 ¼ ðd2 � d1Þ þ ðdtÞ f
1

MðdtÞ GMðdtÞ � d2 � d2

 �� �

� f
1

MðdtÞ fGMðdtÞ � d1 � d1g
� �� �

P ðd2 � d1Þ þ ðdtÞ f
1

MðdtÞ GMðdtÞ � d2 � d2

 �� �

� f
1

MðdtÞ GMðdtÞ � d2 � d1

 �� �� �
(where we used d2 P d1 and that f is increasing)
P ðd2 � d1Þ � ðdtÞ 1
MðdtÞ Lf ðd2 � d1Þ
(where we used the hypothesis that f is Lipschitz)
P 0: ð87Þ
(where we used the hypothesis on M).
This verifies monotonicity of the first step of the algorithm; that of the second is obvious as already noted. h

As in Section 5.1, the algorithm of this section generalizes almost verbatim to the flow of hypersurfaces in RN , where it can
generate motions with normal speed
vn ¼ f ðHÞ ð88Þ
where H denotes the mean curvature of the interface. We note that other generalizations, for example explicit spatial and
time dependence in f, i.e. f ¼ f ð�;x; tÞ, are also easily possible.

5.3. Multiple junctions

In this section, we describe an algorithm based on the signed distance function for simulating the motion of multiple
junctions under curvature motion and subject to the symmetric (i.e. 120�) Herring conditions [21]. This is an important
application that comes up in materials science, e.g. in simulating the grain boundary motion in polycrystals [26]. We will
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use the expansions in Section 4.2 to justify the algorithm and estimate the local truncation error. Our algorithm has the fol-
lowing form:

Algorithm 6. Given the initial sets R1
0; . . . ;Rm

0 through their signed distance functions d1
0ðxÞ; . . . ; dm

0 ðxÞ as well as a time step
size dt > 0, generate the sets R1

j ; . . . ;Rm
j via their signed distance functions d1

j ðxÞ; . . . ; dm
j ðxÞ at subsequent discrete times

t ¼ jðdtÞ by alternating the following steps:
Fig
rep
ha
an
1. Form the convolutions
. 7. Th
resenta

ve not b
gle con
Lk
j :¼ Kdt � dk

j ð89Þ
for k ¼ 1; . . . ;m where Kt is one of the kernels:
Kt ¼ Gt or Kt ¼
1
3

4G3
2t � G3t

� 	
:

2. Construct the signed distance functions dk
jþ1 for k ¼ 1; . . . ;m according to
dk
jþ1 ¼ Redist Lk

j �maxfL‘j : ‘ – kg
� 	

: ð90Þ
The reassignment step (90) of the algorithm stems from the t !1 limit of gradient descent on the multiwell potential
that constitutes the nonlinear, pointwise term in vectorial phase-field energies such as the ones in [3,6]. It is identical to
the reassignment step in [25].

This algorithm differs from the one proposed in [25] in important ways. First of all, the authors in [25] utilize redistancing
(construction of the signed distance function) optionally, only as a means to prevent the level set function from becoming too
steep or too flat – this is the standard role of redistancing in level set computations, as used even in two-phase flows, and is
typically employed only occasionally during the flow (once per a large number of time steps). Indeed, the authors state
explicitly that as long as the level set does not become too steep or too flat, any level set representation can be used. How-
ever, in order to get the desired Herring angle (i.e. boundary) conditions at junctions, it is absolutely essential to make sure
that the profile of level sets representing the various phases be the same near the junctions. In other words, using arbitrary
(even if not too flat, not too steep) level sets to represent the phases as is suggested in [25] will lead to Oð1Þ errors in the
angles at the junctions; this simple fact can be easily understood by considering what happens to an arrangement of three
phases where one of the phases is represented by a level set function half as steep as the other two; Fig. 7 shows a numerical
experiment verifying this effect. (To be fair, authors of [25] eventually propose an ‘‘Algorithm B” that redistances at every
time step, but claim this is only to keep the level set from becoming too steep or too flat. In reality, level sets do not degen-
erate during the multiphase motion as rapidly as is suggested by the authors – this is not the correct reason for redistancing).
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e black curve shows the initial phase configuration. The red curve is the inconsistent approximation resulting from unequal level set
tion of the three phases around the junction, as in ‘‘Algorithm A” of [25], after a few iterations; the inconsistency arises even though the level sets
ecome too steep or too flat during the short evolution. The blue curve is the algorithm proposed in this paper, which stably preserves the correct

dition at the junction.
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Furthermore, the algorithms for multiple junctions proposed in [25] and utilized in the more recent application paper [42], or
in the related work [37], all evolve the level set functions representing the phases via the standard level set formulation of
curvature motion. The algorithm proposed here uses convolution (with a Gaussian or more accurate kernel) at every step to
evolve the different phases, and therefore maintains the unconditional stability of the two-phase case. It should be pointed
out that various other numerical algorithms have been proposed for computing the motion of networks of junctions, includ-
ing front tracking, level set, and phase field based methods; see e.g. [5,7,6,3,19,44,38,23,16] and their references. We repeat
that, in this context of networks as in others, front tracking based methods do not allow painless treatment of topological
changes and are therefore hard to extend to three dimensions; phase field based methods require the spatial resolution
of a rapid transition layer and involve the small parameter describing the thickness of this layer as a stiffness parameter;
and standard level set based methods require the solution of highly nonlinear, degenerate PDE.

We now provide some justification for algorithm (89) and (90), focusing on the case Kt ¼ Gt for simplicity. First, note that
the algorithm moves interfaces with motion by curvature away from the triple junction; this is immediate based on expan-
sion (30) and the definition of the algorithm. The more interesting point is its behavior at a triple junction, which we now
focus on. Our goal is to establish that the scheme not only preserves but in fact imposes symmetric (120�) Herring angle con-
ditions at the junction. An analogous calculation for the thresholding based precursor of our algorithm has been carried out
in [30]. The argument presented below is a bit more abstract and less explicit, as the representation of the interface we deal
with, namely the signed distance function, is not as explicitly given in terms of the interface as a characteristic function is.

Consider a triple junction at the origin formed by the meeting of three C2 curves C12; C23, and C31. Let the three curves Cj

constitute the boundaries of three phases R1; R2, and R3 as shown in Fig. 4. Let the angle subtended at the triple junction by
phase Rj be 2hj, with j ¼ 1;2;3. We will assume that hj are in a small enough neighborhood of p

3. Let us also assume that the
configuration has been rotated if necessary so that R1 is contained in the lower half plane, and its boundary curves make
angles of h1 with the axis fy 6 0g as shown in Fig. 4. Let d1, d2, and d3 denote the signed distance functions of R1; R2,
and R3, respectively. For convenience, let us define the following functions:
AðhÞ ¼ 1ffiffiffiffi
p
p h� p

2
� cos h

� 	

BðhÞ ¼ � 1
p

p
2
þ h

� 	
sin hþ cos h

� 	
Q 1ðhÞ ¼

1
16

ffiffiffiffi
p
p ð2h� 4 cos h� sin 2h� pÞ

Q 2ðhÞ ¼
1

16
ffiffiffiffi
p
p ðsin 2hþ 2h� pÞ:

ð91Þ
Using (62) in Proposition 5, we then have the following Taylor expansions for the functions dj � Gt at the origin:
d1 � Gt ¼ Aðh1Þ
ffiffi
t
p
þ Bðh1Þyþ

1ffiffi
t
p Q 1ðh1Þx2 þ 1ffiffi

t
p Q 2ðh1Þy2 þ C1

1ðtÞ
ffiffi
t
p
þ C1

2ðtÞxþ C1
3ðtÞyþH:O:T:

d2 � Gt ¼ Aðh2Þ
ffiffi
t
p
þ Bðh2Þ sinðh1 þ h2Þxþ cosðh1 þ h2Þyð Þ þ 1ffiffi

t
p Q 1ðh2Þ cosðh1 þ h2Þx� sinðh1 þ h2Þyð Þ2

þ 1ffiffi
t
p Q 2ðh2Þ sinðh1 þ h2Þxþ cosðh1 þ h2Þyð Þ2 þ C2

1ðtÞ
ffiffi
t
p
þ C2

2ðtÞxþ C2
3ðtÞyþH:O:T: ð92Þ

d3 � Gt ¼ Aðh3Þ
ffiffi
t
p
þ Bðh3Þ � sinðh1 þ h3Þxþ cosðh1 þ h3Þyð Þ þ 1ffiffi

t
p Q 1ðh3Þ cosðh1 þ h3Þxþ sinðh1 þ h3Þyð Þ2

þ 1ffiffi
t
p Q 2ðh3Þ � sinðh1 þ h3Þxþ cosðh1 þ h3Þyð Þ2 þ C3

1ðtÞ
ffiffi
t
p
þ C3

2ðtÞxþ C3
3ðtÞyþH:O:T:
where Ci
jðtÞ ¼ Oð

ffiffi
t
p
Þ as t ! 0þ. Expansions for d2 � Gt and d3 � Gt were obtained from that of d1 � Gt simply by the appropriate

rotations. From (92) we can immediately read off the following:

1. If h1 ¼ h2 ¼ h3 ¼ p
3, then the triple junction moves with speed at most Oð1Þ in a time step of size dt.

2. If hj differs from p
3 by Oð1Þ for any j 2 f1;2;3g, then the triple junction moves with speed at least Oðdt�

1
2Þ in a time step of

size dt.

These properties suggest that the motion of the junction has the expected behavior under algorithm (89) and (90). Indeed,
the second point suggests that if the Herring angle conditions are not satisfied initially, then the numerical solution will ‘‘ad-
just” the location of the triple junction at a fast time scale (infinitely fast as dt ! 0þ). We will now see if this fast adjustment
takes the angles towards or away from the Herring condition. To that end, assume that the angles h1 and h2 at the beginning
of a time step with the algorithm are not too far from p

3. We can solve for the new coordinates ðx�; y�Þ of the triple junction
after the time step using (92). Indeed, the three surfaces in (92) intersect in three curves, which in return intersect in a point
in the ðx; yÞ-plane, whose coordinates can be found by solving
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ðd1 � GtÞðx�; y�Þ ¼ ðd
2 � GtÞðx�; y�Þ ¼ ðd

3 � GtÞðx�; y�Þ ð93Þ
for x� and y�.
From (92) we see that ðx�; y�Þ are given by
x� ¼ �
ffiffiffi
3
p

3
A0 p

3

� 

B p

3

� 
 ffiffi
t
p

2h2 þ h1 � pð Þ þH:O:T: ¼ 2
ffiffiffiffiffiffiffi
3p
p

ð2þ
ffiffiffi
3
p
Þ

6þ 5p
ffiffiffi
3
p

ffiffi
t
p

2h2 þ h1 � pð Þ þH:O:T:

y� ¼ �
A0 p

3

� 

B p

3

� 
 ffiffi
t
p

h1 �
p
3

� 	
þH:O:T: ¼ 6

ffiffiffiffi
p
p
ð2þ

ffiffiffi
3
p
Þ

6þ 5p
ffiffiffi
3
p

ffiffi
t
p

h1 �
p
3

� 	
þH:O:T:

ð94Þ
Differentiating (92) and evaluating the result at the new junction location ðx�; y�Þ, we see that the normals to the three curves
at the junction are given by
N12 :¼ rðGt � ðd1 � d2ÞÞðx�; y�Þ;
N23 :¼ rðGt � ðd2 � d3ÞÞðx�; y�Þ; ð95Þ
N31 :¼ rðGt � ðd3 � d1ÞÞðx�; y�Þ:
up to high order terms; see Fig. 8. The two angles ðh1; h2Þ between the curves at the beginning of the time step get sent to a
new pair of angles ð~h1; ~h2Þ at the end of the time step. These new angles can be expressed using (95) as
~h1 ¼
1
2

cos�1 N31 � N12

kN31k kN12k

� �
þH:O:T:; and

~h2 ¼
1
2

cos�1 N12 � N23

kN12k kN23k

� �
þH:O:T:

ð96Þ
Noting again that h3 is determined in terms of h1 and h2, the task at hand is to study the map
ðh1; h2Þ ! ð~h1; ~h2Þ: ð97Þ
in terms of its fixed points and their stability. To that end, first define the map / : R2 ! R2 as
/ðh1; h2Þ :¼ 1
2

cos�1 N31 � N12

kN31k kN12k

� �
; cos�1 N12 � N23

kN12k kN23k

� �� �
: ð98Þ
Then, consider the related map w : R2 ! R2 given by
wðh1; h2Þ :¼ N31 � N12

kN31k kN12k
;

N12 � N23

kN12k kN23k

� �
: ð99Þ
Note that
w
p
3
;
p
3

� 	
¼ � 1

2
;
1
2

� �
: ð100Þ
We also compute, using MAPLE, that
ðDwÞ p
3
;
p
3

� 	
¼

c 0
0 c

� �
ð101Þ
The three convolved distance functions, Gt � dj with j ¼ 1;2;3, intersect in three curves whose projections onto the xy-plane intersect in a point: the
ation of the triple junction at the end of the time step.
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with
c ¼ �3
4

12
ffiffiffi
3
p
þ 27pþ 50p2

ffiffiffi
3
p
� 36p

ffiffiffi
3
p

ð6þ 5p
ffiffiffi
3
p
Þ2

� �0:52: ð102Þ
Write the components of w as w ¼ ðw1;w2Þ so that we have
/ðh1; h2Þ ¼
1
2

cos�1 w1ðh1; h2Þð Þ; cos�1 w2ðh1; h2Þð Þ
� 


: ð103Þ
Now, expand / in a Taylor series near p
3 ;

p
3

� 

. We have
/
p
3
;
p
3

� 	
¼ p

3
;
p
3

� 	
þ Oð

ffiffi
t
p
Þ ð104Þ
and
ðD/Þ p
3
;
p
3

� 	
¼ 1

2
d

dn
cos�1ðnÞ

����
n¼�1

2

ðDwÞjðh1 ;h2Þ¼ p
3;

p
3ð Þ þH:O:T: ¼ �

ffiffiffi
3
p

3
c 0
0 c

� �
þH:O:T: ð105Þ
Putting (105) together with (101) and (102), we see that
~h1 � p
3

~h2 � p
3

 !
¼ M

h1 � p
3

h2 � p
3

 !
þ Oð

ffiffi
t
p
Þ þH:O:T: ð106Þ
where M is a 2 	 2 constant matrix whose largest singular value r satisfies
r � 0:3 ð107Þ
for all small enough t > 0 according to (105) along with continuous dependence of the eigenvalues of a matrix on its entries.
We thus see that algorithm (89) and (90) stably imposes the Herring angle conditions with an error of the form Oð

ffiffi
t
p
Þ.

5.4. High order motions

In this very experimental and rather speculative section, we briefly note how distance function based algorithms for high
order motions, such as Willmore flow or surface diffusion flow, might be designed via the expansions of Section 4. This is in
analogy with the threshold dynamics based algorithms for Willmore and surface diffusion flows in [20,15].

Here, we focus just on surface diffusion. For this flow, the normal speed of the interface is given by
vn ¼ �jss ¼ �jxx ¼ �f ðivÞð0Þ þ 3ðf 00ð0ÞÞ3:
There are several alternatives for achieving this speed. For example, as in [20,15], one can first take convolution of the signed
distance function to the interface using two different kernels, then take the correct linear combination of the two convolu-
tions so that the lower order, curvature related terms in expansion (30) drop out, leaving behind derivatives of curvature
exposed in the dominant terms. Interestingly, the exact form of the algorithm (in particular, the weights used) turn out
to be different than in the threshold dynamics case:

Algorithm 7. Given the initial set R0 through its signed distance function d0ðxÞ and a time step size dt > 0, generate the sets
Rj via their signed distance functions djðxÞ at subsequent discrete times t ¼ jðdtÞ by alternating the following steps:
1. Form the functions
A :¼ 2G ffiffiffi
dt
p � G2

ffiffiffi
dt
p

� 

� dj;

B :¼ G ffiffiffi
dt
p � dj � dj

� 
3
:

ð108Þ
2. Construct the signed distance function djþ1 by
djþ1ðxÞ ¼ Redist
ffiffiffiffiffi
dt
p

Aþ B
� 	

: ð109Þ
6. Numerical results

In this section we present several numerical results and convergence studies with the algorithms proposed in the previ-
ous sections. Since construction of the signed distance function to a set constitutes a major common step of all the algo-
rithms, it is worth a brief discussion. Fast and accurate solution of Hamilton–Jacobi equations such as the Eikonal
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equation is an extensive field in its own right. Here, we are only interested in constructing standard Euclidean distance func-
tions, which makes the corresponding Eikonal equation particularly simple and a great variety of existing algorithms appli-
cable. In the computations presented below, a very simple procedure for second order accurate computation of the Euclidean
distance function in a tubular neighborhood of the interface was utilized. Specifically, it is based on starting with a first order
reconstruction (for which there are indeed many fast algorithms) and then improving it to second (or higher) order by a few
steps of a line search strategy at every grid point. Of course, high order versions of more sophisticated algorithms such as
[40,35,29,39,43,11] can also be used, perhaps with better results.

Some comments on the computational complexity of the proposed algorithms are also in order. For the sake of simplicity,
let us leave possible gains from local versions of the algorithms (such as redistancing only in a tubular neighborhood of the
interfaces) out of this brief discussion; although these enhancements are entirely feasible (e.g. in practice one needs to con-
struct the signed distance function only in a tubular neighborhood of thickness �

ffiffiffiffiffi
dt
p

for second order flows), they are in any
case not always as worthwhile as might be suspected – indeed, in applications such as large scale grain boundary motion
simulations [13], the evolving network of curves or surfaces is, at least initially, so dense that even a relatively thin tubular
neighborhood of them covers almost the entire grid. When the proposed algorithms are thus implemented globally on an
N 	 N, uniform computational grid discretizing e.g. the unit square ½0;1
2, the convolution operations can be completed at
OðN2 log NÞ complexity using the fast Fourier transform. As mentioned above, the redistancing steps of the proposed algo-
rithms can be accomplished using e.g. fast marching, whose complexity is also OðN2 log NÞ on the whole computational grid
provided that first order accurate in space solutions are acceptable. If high order accurate distance functions are required, the
first order accurate solutions from e.g. fast marching can be improved to higher order using the strategy mentioned above
(and used in numerical results of this paper) at OðN2Þ cost. Hence, overall, the complexity of each time step of the proposed
algorithms is essentially linear in the number of grid points.

6.1. Curvature motion

We first consider the convergence of algorithm (64) and (65) computed over the time interval 0; 3
256

� �
. The initial condition

is a circle of radius 1
4.
Resolution
 # time steps
 Relative error (%)
 Order
32 	 32
 10
 0.98
 –

64 	 64
 20
 0.41
 1.25

128 	 128
 40
 0.19
 1.11

256 	 256
 80
 0.093
 1.03

512 	 512
 160
 0.045
 1.05
The errors cited are the errors in the radius of the shrinking circle, the exact value RðtÞ of which is given by
dR
dt
¼ �1

R
) RðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
� 2t

r
ð110Þ
which gives R ¼
ffiffiffiffiffiffi

5
128

q
at t ¼ 3

256.
Convergence of algorithm (68)–(70) on the same test with an initial circle:
Resolution
 # of time steps
 Relative error (%)
 Order
32 	 32
 10
 0.39
 –

64 	 64
 20
 0.16
 1.29

128 	 128
 40
 0.088
 0.86

256 	 256
 80
 0.044
 1.00

512 	 512
 160
 0.022
 1.00
The order of convergence of the time integration is of course still linear, but the results are more accurate by a factor of
two with no difference in computational cost: Only a different kernel is used in the convolution step.

We now present results of the higher order method (73)–(75) on the same shrinking circle example:
Resolution
 # of time steps
 Relative error (%)
 Order
32 	 32
 10
 0.17
 –

64 	 64
 20
 0.047
 1.85

128 	 128
 40
 0.013
 1.85

256 	 256
 80
 0.0033
 1.98

512 	 512
 160
 0.00086
 1.94
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Here, the standard Gaussian kernel Gt was used in the convolutions.
On the same problem, the multistep version (76) and (77) of the high order in t algorithm gives the following results:
Fig
th
10
th
Resolution
. 9. A more interesting curve under curvat
e solution at time t ¼ 3

256 computed at two
24 	 1024 resolution using 320 time steps.
is article.)
# of time steps
ure motion. The initial curve is shown on the lef
different resolutions: The black curve at 32 	 32
(For interpretation of the references to colour in
Relative error (%)
t. The image on the right shows superimposed on e
spatial resolution using 10 time steps, and the red

this figure legend, the reader is referred to the web
Order
32 	 32
 10
 0.092
 –

64 	 64
 20
 0.027
 1.77

128 	 128
 40
 0.0078
 1.79

256 	 256
 80
 0.0020
 1.96

512	512
 160
 0.00052
 1.94
The next set of results concern the motion by curvature of the more interesting curve shown in Fig. 9. Since an explicit
solution is not available in this case, we monitor the error in the von Neumann law of area loss [41]:
d
dt

AðtÞ ¼ �2p ð111Þ
in this (i.e. two-phase) case. The table below shows the relative error in this rate of area loss of the shape as it evolves, using
the 2nd order in time scheme (73)–(75).
Resolution
 # of time steps
 Relative error (%)
 Order
32 	 32
 10
 1.12
 –

64 	 64
 20
 0.81
 0.47

128 	 128
 40
 0.21
 1.95

256 	 256
 80
 0.036
 2.54

512 	 512
 160
 0.0028
 3.68
6.2. Motion by f ðjÞ

From an applications point of view, one of the most important geometric motions with normal speed of the form
vn ¼ f ðjÞ
is the affine invariant motion by curvature [2,33,34], which has the precise form
vn ¼ j1
3: ð112Þ
ach other
curve at

version of
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It arises in computer vision applications where algorithms for such fundamental operations on images as denoising and seg-
mentation are expected to be invariant under small changes of the viewpoint. Of course, in this case, f ðnÞ ¼ n

1
3 is not Lipschitz,

so that our proposed algorithm in Section 5.2 for this type of motion is not monotone in this case. However, we can of course
regularize f, for example as
Fig. 10.
curvatu
the evo
this art
feðnÞ ¼ signðnÞ n2 þ e
� 
1

6 � e1
6

� �
: ð113Þ
With e > 0; f e is Lipschitz with Lipschitz constant
Le ¼
160

1
6
ffiffiffi
6
p

30e1
3
: ð114Þ
We can then choose the constant M in the description of algorithm (80) and (81) large enough (and dependent on e) to en-
sure monotonicity via Proposition 6. On the other hand, in numerical experiments we find that just fixing M e.g. at M ¼ 2 and
taking e ¼ 0 (i.e. no regularization) does not seem to lead to any instabilities. The results presented in this section were
therefore obtained with no regularization and the said value of M.

Fig. 10 shows the important example of an ellipse, which should remain an ellipse of fixed eccentricity as it evolves due to
the affine invariance of the flow, unlike under standard motion by mean curvature that takes the curve asymptotically to a
circle. Large time steps were taken to demonstrate stability.

As important as the example of an ellipse is, it is not a particularly challenging test case for affine invariant motion since
its curvature remains bounded away from 0 and hence the algorithm never has to deal with the (regularized) singularity at
inflection ðj ¼ 0Þ points. Fig. 11 shows the result of the algorithm on the more interesting example of an initially flower
shaped curve.
6.3. Junctions

This section presents a couple of simple examples of computing the motion of a triple junction under curvature motion in
the plane using the algorithm (89) and (90) in Section 5.3. Algorithm (89) and (90) can in fact be generalized to allow accu-
rate and efficient computation of very large scale grain networks in both two and three space dimensions, which is of high
interest in materials science applications. Extensive demonstration of a generalized version of the algorithm in this capacity
has been carried and will be reported separately in an upcoming paper [13] by one of the authors. Here, we confine ourselves
to the simple cases of only three or four phases.

Fig. 12 shows a computation with three phases. The initial data consists of two partially overlapping disks with a straight
interface in between, as shown in Fig. 12. The two partial disks constitute two of the phases; the background (complement of
the disks) constitutes the third. Hence, all three phases have n ¼ 2 triple junctions on their boundary throughout the evolu-
tion. If we let AðtÞ denote area of one of the partial disks, the von Neumann area loss law [41] this time implies
Affine Invariant Motion by Curvature
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Motion by Curvature
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Comparison between regular (left) and affine invariant curvature motion (right). The initial curve, an ellipse, is shown in red. Under affine invariant
re motion, in remains an ellipse of fixed eccentricity. Computation was carried out on a 64 	 64 domain with coarse time steps; blue curves show
lving curve at consecutive time steps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
icle.)



Fig. 11. Motion of a flower shaped curve under affine invariant curvature motion computed using algorithm (80) and (81). The upper left plot shows the
initial curve. The upper right and lower left plots show the evolution of the curve at subsequent times. These computations were carried out on a 256 	 256
grid using 80 and 160 time steps, respectively. The lower right plot shows the result from the 256 	 256 computation at 160 time steps (black curve)
superimposed with the same solution computed on a 32 	 32 grid using only 20 (eight times larger) time steps (red curve). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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d
dt

AðtÞ ¼ p
3
ðn� 6Þ ¼ �4p

3
ð115Þ
To assess the accuracy of the simulation, we measure the rate of area loss in one of the partial disks. The table below shows
the percentage relative error in this quantity over the time interval 0; 1

64

� �
. Gaussian kernel was used in the convolution step

(89).
Resolution
 # of time steps
 Relative error (%)
 Order
32 	 32
 30
 3.91
 –

64 	 64
 60
 2.07
 0.918

128 	 128
 120
 1.28
 0.693

256 	 256
 240
 0.84
 0.608

512 	 512
 480
 0.53
 0.664
The errors reported in the table were obtained as an average over 10 runs with the initial condition rotated and translated
randomly to preempt possible interference from grid effects. The truncation error analysis carried out in Section 4.2 implies
Oð

ffiffi
t
p
Þ error at junctions, some evidence of which can be seen in the table. Fig. 12 shows the computed solution at 32 	 32

and 512 	 512 resolution superimposed.



Fig. 12. The first plot shows the initial condition for algorithm (89) and (90). The second plot shows the solution at t ¼ 1
64 computed using 30 time steps at

32 	 32 spatial resolution (red curve), superimposed with the computed result using 480 time steps at 512 	 512 resolution (black curve). The error in the
latter is about one thirteenth of the former. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 13 shows a computation with four phases: Three partial disks and the background. This time, von Neumann law
gives:
d
dt

AðtÞ ¼ p
3
ðn� 6Þ ¼ �p: ð116Þ
The relative error in (116) is tabulated in the table below at various resolutions:
Resolution
 # of time steps
 Relative error (%)
 Order
32 	 32
 30
 3.82
 –

64 	 64
 60
 2.10
 0.863

128 	 128
 120
 1.26
 0.737

256 	 256
 240
 0.71
 0.828

512 	 512
 480
 0.44
 0.690
The plot on the right in Fig. 13 compares as in the previous example the solution obtained at high and low (spatial and
temporal) resolutions.

Fig. 14 shows the 512 	 512 computation at later times. At some point, one of the phases that started out as a partial disk
disappears. The algorithm handles that transition seamlessly, and carries on as a three phase flow from that point onwards –
one of the well-known advantages of implicit interface representations is thus maintained in our algorithms, as expected.



Fig. 14. Further evolution of four phase initial condition from Fig. 13 at a 512 	 512 resolution. One of the phases disappears at an intermediate time; the

evolution then seamlessly proceeds as a three phase flow.

Fig. 15. Evolution of two curves under the tentative algorithm for surface diffusion of Section 5.4 . The red curve is the initial condition in each case. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Finally, we expect that the rate of convergence of the algorithm can be improved, if needed, by the Richardson extrapo-
lation type ideas used in Section 5.1, as was done in [31] for multiphase motion in the context of threshold dynamics.

6.4. High order motions

Here we present a couple of simple numerical tests of the tentative algorithm for surface diffusion suggested in Section
5.4. The examples are intended merely as a qualitative check. The first plot of Fig. 15 shows the evolution of an ellipse under
this algorithm towards a circle at times 1:25	 10�6 (reached with 2000 time steps) and 2:5 	 10�6 (4000 time steps), com-
puted on the modest grid size of 128 	 128. Surface diffusion flow preserves area; the change in area in the computed solu-
tion at final time is � 4:25%. The second plot of Fig. 15 shows the evolution of a slightly more interesting, initially flower
shaped curve.

The scheme appears to be stable under much larger time steps, too, but then the error becomes large rather quickly. Per-
haps the Richardson extrapolation idea used in Section 5.1 can be applied also here to improve the accuracy.
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